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We come back to the 1979 controversy about  the value of the energy per par- 
ticle q5 i in an infinite Wigner lattice of electrons in a uniform compensating 
background. For simplicity we restrict ourselves to the simple cubic (and 
square) lattice. We present an accurate calculation of the energy ~el of one elec- 
tron in the field of the other electrons plus background for the case that the 
system (system I) is considered as an infinite arrangement of neutral cubes 
(Wigner-Seitz cells). The value obtained is checked by computer  calculations. 
We confirm the conclusion of de Wette that for this system the relation 
~/'i - �89 (often accepted without discussion) does not hold and we calculate the 
difference AqS, which represents the average potential in the system. On the 
other hand, if the system is considered as the limit of a set of spheres with 
increasing radii, such that the spheres are neutral (system II), we obtain a 
different value of ~el and in this case 45 i =  �89 We show explicitly that the 
Ewald method of summation,  used by Fuchs and others, leads to the same 
analytical expression as the limit obtained for a set of neutral spheres 
(system II). We extend the calculations to the two-dimensional square lattice. 
Here the equality ~ i =  1(~e1 holds also in the case of an infinite arrangement  of 
neutral squares (system I). 

KEY W O R D S :  Wigner lattice; energy per particle; Ewald method of sum- 
mation. 

1. I N T R O D U C T I O N  

In the elementary electron theory of solids it is assumed that the valence 
electrons move independently in a periodic field. Attempts to take into 
account the interaction between the electrons in a more rigorous way 
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originated more than 50 years ago in the work of Wigner. (u The problem is 
often simplified by neglecting the periodic structure of the system and 
considering an electron gas moving in a uniform, positively charged 
background, sometimes called a jelly, in order to make the system elec- 
trically neutral. The electron density p is usually expressed in terms of the 
dimensionless quantity r s defined by 

1/p = 4/3rcr 3 a 3 ( 1.1 ) 

where a o - t i 2 / m e  2 is the Bohr radius; i.e., r~ is the radius (expressed in 
atomic units) of a sphere with volume equal to the volume per electron. 
Small r~ means high density, large r s means low density; for real metals rs is 
of the order of 5. 

In modern many-body theory refined perturbation methods have been 
successfully used in treating the interaction between electrons. They lead to 
an expansion for the energy of an electron gas for small values of rs, i.e., it 
is essentially a high-densty expansion. In order to develop interpolation 
formulas for the case of realistic r s values it is obviously useful to consider 
the low-density limit also, i.e., the case of a dilute electron gas (large r,). 
Wigner, in the papers referred to above, argued that in the limit of large 
r s values the kinetic energy of the electrons, which is proportional to r7 2, 
could be neglected in comparison with the potential energy (proportional 
to r s~) and he suggested that in a dilute electron gas the electrons would 
arrange themselves in a configuration of minimum potential energy, 
"probably a body-centered cubic lattice." Fuchs (2) was the first to perform 
an accurate calculation of the potential energy of an electron lattice in a 
positive compensating background for the bcc and fcc lattices and he found 
that the bcc structure was indeed the more stable one, though the difference 
turned out to be very small. 

In 1960 Coldwell-Horsfall and Maradudin (3) evaluated the potential 
energy per electron for the three primitive cubic electron lattices in much 
the same way. Like Fuchs, they used summation methods introduced by 
Ewald and in addition to the static energy they also calculated the correc- 
tion (proportional to r s  3/2) to the energy due to the zero-point vibrations 
around the lattice positions. Their results for the static lattices were, in 
Rydberg units e2/2ao, 

E b c  c = - -  1.791860(1/r,) 

Efo c = -- 1.791753( 1/G ) (1.2) 

Esc = -- 1.760119(1/G ) 

Several people confirmed, simplified, or generalized the calculation, among 
them Foldy (4) and Nijboer. (s) In the latter paper it was remarked that the 
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potential energy per electron of an electron gas in a neutralizing 
background can be expressed as 

-- [ 1 - g ( r ) ] - -  (1.3) 
E - 2ao rs r 

where g(r) is the so-called pair-distribution function and the cubic root of 
the volume per particle is taken as the unit of length in the integral. 

The integral can be calculated by the following Ewald-like 
mathematical transformation: 

f l -  gIr) d3r= f l -  g(r_____~) qs(x/-~, r)d3 r + f 1 - g ( r )  [_ 1 _ ~ ( x ~ .  r) ] d3 r 
r r 

where 

V(1/2, x 2) fx ~ 
qS(x)=Erfc(x) -  F(1/2) - 2 ~  1/2 exp(_t2)dt 

Because 

1 
f [exp(27rih �9 r)] 1 - crp(x/-~'r r) d3 r = 7h -7 exp( - rrh 2) 

we find, applying Parseval's theorem, 

f l - g(r) d3 r 
r 

: f E l -  g(r)] d3 r + f 1 -  S h) r - ~  exp(-zth 2) d3h 

= 3- fg ( r )~(x / - s  (1.4) 
r /th 2 

Here S(h) is the so-called structure function; S ( h ) -  1 is the Fourier trans- 
form of g(r) - 1. For a Bravais lattice g(r) is a sum of 6-functions and S(h) 
a sum of &functions in the reciprocal lattice. For lattices the integrals in 
(1.4) reduce to lattice sums and they converge very rapidly. This is because 
g ( 0 ) = 0  and S(0) is also very small, as it represents the relative com- 
pressibility of the system (relative with respect to that of an ideal gas). 
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For the simple cubic lattice, to which for simplicity we will restrict 
ourselves in the following, one finds 2 

f l - - _ g ( r )  d3 r = 2 . 8 3 7 2 9 8  
F 

(1.5) 

This number leads with (1.3) to the value mentioned in (1.2) for the energy 
per electron in an sclattice. We want to stress that (1.4) may be easily 
applied to other lattices and also holds for liquids. 

In 1979 Hall, referring to unpublished work of Plaskett, published an 
extensive paper (7) in which he stated that the numbers quoted in (1.2) were 
incorrect and that a correction term should be applied, depending on the 
lattice considered and which for the sc lattice amounted to 

+ 0.324815(1/rs) (1.6) 

resulting in an energy per particle of 

- 1.435304(1/rs) Ry (1.7) 

Hall's paper created at the time quite a controversy. Several authors, 
among whom we mention in particular de Wette (81 and Ihm and Cohen, ~ 
argued that Fuchs' values for the energy per particle given in (1.2) were 
nevertheless correct. One should distinguish between ~el, which is the 
energy of one electron in the field due to the other electrons plus the 
positive background, and ~i, which is the energy per particle. This 
notation is the one used by de Wette. In some types of calculation 
q~J= �89 an equality which often is assumed to hold without further dis- 
cussion, e.g., by Fuchs as well as by Hall. Also, in using the expression 
(1.3) for the energy per particle we have without further discussion iden- 
tified ~i  with �89 In other types of calculation (e.g., that by Hall) the 
equality does not hold. The problem is that one deals with an infinite 
system and the sums (and integrals) occurring are only conditionally con- 
vergent. In the present paper we will present exact calculations of the 
energies ~el and qs~ in a simple cubic lattice by various methods. All of 
them will turn out to lead to the value for q>i quoted in (1.2), thus confirm- 
ing in more detail the points of view of the authors quoted in references 8 

2This number  had already been found by the same method for the integral 
{ [1 - g(r)]/Tzr 2 } d3r for an sc lattice by Placzek eta[. 16) in 1951, where it occurs in a paper 

on the scattering of neutrons in dense media. In general one can easily show that the latter 
integral for a certain Bravais lattice is equal to S { [1 - g(r)]/r} d3r for its reciprocal lattice; 
cf. also ref. 5. By the way, we have checked that if we replace the Coulomb interaction 1/r by 
1/r 2 the calculation of the quantity qSe~ yields for system I the same value as for system II. 



Energy per Particle in 2D and 3D Wigner Lattices 365 

and 9. We will also apply these methods to a two-dimensional simple 
square Wigner lattice. Here the equality qs~ = �89 turns out to hold for all 
methods considered. 

2. C A L C U L A T I O N  OF ~el  FOR A N  I N F I N I T E  S Y S T E M  OF 
N E U T R A L  C U B E S  ( O R  S Q U A R E S ) ;  S Y S T E M  I 

2.1. D i m e n s i o n  3 

We consider a simple cubic lattice of electrons (charge - e ) .  Each elec- 
tron is surrounded by a little cube (Wigner Seitz cell) with edge a, which 
carries a uniform positive charge density p = e/a 3. We want to calculate 
qs~, which is the energy required to bring an electron from infinity to an 
empty lattice site in the presence of electrons occupying the remaining sites 
and the neutralizing positive background. We first consider a finite system 
consisting of an integer number of these neutral little cubes and then let the 
dimensions of the system go to infinity in all directions: system I. We only 
count the contribution of the cells the centers of which fall inside a sphere 
with arbitrary radius R and then let R go to infinity. Alternatively, we may 
consider a large cube with edges Na, so that its boundary consists of faces 
of the little cubes. An infinite system is then obtained by letting N go to 
infinity. It will be clear that the result for ~be~ will be the same in both cases. 
This is because a multipole expansion of the potential of a neutral cube 
starts with l =  4 and the potential therefore decreases with r -5, where r is 
the distance from the origin to the center of the little cube [cf. (2.15)]. 

We first calculate the potential energy q~(r) of an electron in the field 
of one neutral little cube, where r is the vector between electron and the 
center of the cell: 

e 2 f dr' 
= - - -  ep ~o(r) r , t r - r ' l  

(2.1) 

where the asterisk indicates that the integration extends over a little cube 
with edge a. Introducing the dimensionless vectors u = r/a and u ' =  r'/a, we 
write (2.1) in the form 

<p(au) = (e2/a)[ 1/u - I(u)]  (2.2) 

where 

l(u) = f du' (2.3) 
, lu--u'l 

822/53/L-2-24 
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is a three-dimensional integral over a cell with unit edges. This integral can 
be reduced in dimension by substituting 

1 2 Jo r~exp( - t2 lu -u ' 12 )d t  (2.4) 
lu - u ' l  

The integration over the components of u' may now be performed, leading 
to the error function 

~ ( t ) = ~  e x p ( - x  2) dx 

After partial integration and using 

d ~  r/3 6 t2 
dt - x ~  ~2(t)  e (2.5) 

the final expression for I(u) becomes (u = x, y, z) 

lf at L 
I(x, y, z) = ~ Jo t 2 dt [h(x, t) h(y, t) h(z, t)] (2.6) 

with 

h(x, 0= ~U{(x + �89 ~{(x-~)t} (2.7) 

For the special case u = 0 we find 

f 3 fo~dt I(0) = dr  = 2 x/- s ~ gtz(t) e -t2 (2.8) 
, ?' 

This integral can be evaluated explicitly. After some partial integrations we 
obtain 

I(0) = - ~ + 6 e-at2g~(t) d2 
t 

rc 6 ~ ~176 e X 
2 x / ~  0 ~ + - - J ,  , F , ( 1 / 2 ; 3 / 2 ; - 1 / Z x )  dx 

where I F1 is the confluent hypergeometric function. Using the relation 

Fa(1/2; 3/2; - 1/2x) = exp( - 1/2x) ~ Ft(1; 3/2; 1/2x) 
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one can perform the integration. The result is 3 

1 (0 )=  - ; +  3 l o g  xf~ -t- 1 _  2.380077 (2.9) 
, 51  

The integral in (2.6) converges rapidly to zero for t ~ oe and may  be 
calculated numerically, using, e.g., the representat ion of the error function 
given in ref. 10. The potential  energy ~bel can now be expressed as a sum of 
contr ibut ions from all cubic cells with the central cell treated separately. 
We find 

E ] ~ d = - - - I ( 0 ) +  { (k2+  + m  2) - I ( k , l , m ) }  (2.10) 
a k.l.m 

the term k = l =  m = 0 being omit ted from the sum. This sum is absolutely 
convergent  and can easily be calculated numerically. In Table I (first 
column)  we list the values of  the expression between braces in (2.10), when 
the sum is t runcated at the value n = k 2 + / 2 +  m 2. 

It is seen that  the series converges very rapidly to a limiting value, 
which in Rydberg  units is given by 

~bel= - 2 . 0 , 1 . 4 3 5 3 1 ( 1 / r s )  Ry (2.11) 

Notice that  I(0) taken alone deviates only about  3% from the final 
sum. The value (2.11) agrees with the computer  result obtained by de 
Wette, (8) presumably by using the scaled result (2.9) for a large cube and 

3 We thank Dr. F. W. de Wette for reminding us of this result. It had actually been derived by 
one of us (B.N.) already in 1964 (unpublished), but forgotten in the mean time. 

Table  I 

n Term in {- } in (2.10) Multipoles 

0 -2.380077 
1 - 2.304807 - 2.30637 
2 -2.310437 -2.31469 
3 -2.315897 -2.31494 
4 -2.313237 -2.31449 
5 -2.311887 -2.31447 
6 -2.312907 -2.31447 
8 -2.313127 -2.31443 

100 -2.312967 - -  
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adding the contributions from the lattice points inside that cube. The same 
value had been found by Hall (v) by applying a correction to Fuchs' value 
for ~i. 

Another way to calculate the potential of a neutral cube (2.1) is 
by way of a multipole expansion. Using the convention for spherical 
harmonics as given by Jackson, (11) we can write 

cp(r) = - e  ~ 4~(2/+ 1) 1 Q,mr-,-~ylm(O, q)), 
l,m 

r>�89 (2.12) 

with the multipole moment 

e f ,l @ Qt, m=~5 . r  Yzm(O, cp)dr', Q0o=O (2.13) 

However, an expansion in terms of harmonic functions which have 
cubic symmetry is perhaps more convenient. If Yl(x, y, z) is such a har- 
monic of degree l, then A(r -~- ~Yz)= 0 should hold. For each l~< 10 these 
functions are uniquely defined, up to a normalizing factor. They are 

Y4 = 3r4 - 5( x4 + y4 + z 4) 

Y6 = 17( x6 q- y6 q_ Z 6 )  _ 15rZ(x 4 _.]_ y4 q_ z 4) q_ 180x2y2z2 
Y8 = 5( x8 + y8 + z 8) + 28rZ(x 6 + y6 + z 6) _ 35(x 4 + y4 + z4): (2.14) 

Ylo = 5( xl~ + yX0 + zlO) _ 45r2(x 8 + y8 + z 8) + 42(x 6 + y6 L]_ z6)(x 4 _]_ y4 + z 4) 

+ 1638x2yZz2(x 4 + y4 + z 4) _ 630x2yZz2r 4 

The normalization chosen was such that Y2t(1, 0, 0 ) =  2 ( - 1 )  t+~. The 
expansion of qo(r) may now be written as 

~ ( -  1)t/Zal Y/(x, y, z) 
q~(x, y, z ) = e  2 ~72-T MI r21+ 1 ~- (2.15) 

l = 4  

The moments M t can be expressed in terms of the multipo!e moments Qtm. 
In this way we find 

M,=; j f~ f j r 'P , (Z )  dxdydz (2.16) 

The calculation of these moments is tedious, but the results have been 
checked in an independent way: 

M4 = --7/30, M6 = 2/21, M8 = 11/40, M m = --13/33 (2.17) 
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With the potential q0(x, y, z) of (2.15) we calculated @e~ again by 
adding the contributions (up to l =  10) of all neutral cubes the center of 

which lie inside a sphere with radius x/-~. For  the central cube we took the 
value given in (2.9). The results obtained in this way are given in the 
second column of Table I, where they may be compared with the exact 
values. 

2.2. Dimension 2 

For the two-dimensional square lattice the integral (2.3) for I(u) can 
be expressed in terms of elementary functions. With u = (x, y) we find the 
symmetric expression: 

I (u )=  (x + �89  �89 x + �89 f ( y  + �89 x + �89 ] 
1 1 1 ] + (x- �89189  x - ~ ) - f ( y - ~ ,  x - : )  

+ same expression with x and y interchanged (2.18) 

in which 

f (x,  y) = log[(x  2 + y2)1/2 _ x]  (2.19) 

Using again (2.10), but now summing over the two-dimensional square 
lattice, we obtain for the individual terms in the sum the numbers shown in 
Table II. There we also list the value of q~as(k , / )=-1/24(k2+12)  -3/2, 
giving the asymptotic behavior of (k 2 + 12) 2/2 _ I(k, l). The sum is again 
absolutely convergent, but the rate is less than in three dimensions. For  the 
case of neutral squares with centers inside a circle of radius R we obtain 
obel = -e2/alR, with 

Iso = 3.895026, 11oo = 3.897647 (2.20) 

Table II 

k, l T e r m  in [ .  ] in (2.10) q~,~ 

0, 0 - 3 . 5 2 5 4 9 4  - -  
1, 0 - 0 . 0 3 8 0 5 0  - 0 . 0 4 1 6 6 7  
1, 1 - 0 . 0 17 59 1  -0 .014731  
2, 0 - 0 . 0 0 5 0 9 2  - 0 . 0 0 5 2 0 8  
2, 1 - 0 . 0 0 3 8 7 5  - 0 . 0 0 3 7 2 7  
2, 2 - 0 . 0 0 1 9 3 2  -0 .001841  
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Since the approach to the limiting value is slow, we should add the 
contribution of the squares outside the circle. For  large R this may be 
approximated by 

2n ~ r dr n (2.21) 
"~ JR r 3 = 12R 

Finally we obtain the value for the two-dimensional square lattice 

I~  = 3.90026 (2.22) 

3. CALCULATION OF @~ FOR NEUTRAL SPHERES 
(OR CIRCLES) WITH INCREASING RADII; SYSTEM II 

3.1. Dimension 3 

We consider again a simple cubic lattice, the sites of which are 
occupied by electrons, and there is a neutralizing positive background with 
uniform charge density p = e/a 3. As in Section 2, we want to calculate the 
value of q~  for a set of spheres with increasing radii, but now the spheres 
do not contain an integer number of neutral little cubes, but the radii 
a ~ /  are chosen in such a way that the whole sphere is electrically 
neutral, that is, 

3 j 2 _  g(n) (3.1) 
' r  i - -  

n = O  

Here a2n = a2(n 2 + n Z + n  2) is the square of the distance of lattice point 
(nl, n2, n3) to the origin, g(n) is the number of lattice points which have a 
distance a ~ to the center of the sphere, and ZP'__ o extends to the largest 
integer [Pi]  ~<Pi- Notice that for most integer values of p the sum 

Y~= 1 [g(n)/.~/-~] jumps by an amount of order 2~ (_see Appendix A), but 
Pi in ~ , = 1  we mean to include the value of g (n ) /~n  at n =  I-pi]. As the 

contribution of the positive charge inside the sphere to ~e~ is given by 
(2rceZ/a) Pi, we should calculate 

~d  = lira - -  2~pi (3.2) 
i ~ o ~  a n 1 ~'n 

We replace this limit of a sequence for discrete values p~ by the limit of a 
continuous function of p, which for p = p~ has according to (3.1) the above 
values: 
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This limit is evaluated by introducing the (modified) Laplace transform 

f(s)=- f T  e ~ppil2S(p) d p (3.4) 

of the function f ( p )  and then applying an appropriate form of Tauber's 
theorem (12) (see Appendix A). 

When the result is written as ~be~---- --(e2/a) J ,  the dimensionless quan- 
tity J is found to be given by 

J = 3 -- g(n) -- g(n) (3.5) 
n = l  ~7"g n = l  

This is exactly the same expression as is obtained by the Ewald-like trans- 
formation briefly explained in the Introduction. When the general result of 
this transformation (1.4) is applied to the simple cubic lattice, (3.5) is 
found. The two series in (3.5) converge very rapidly; only three or four 
terms are needed to lead to the values 

J = 2.837298 

qS,1 = --2.0 * 1.760119(l/r,) Ry 
(3.7) 

already mentioned in the Introduction. 
This result for system II deviates considerably from the result (2.11) 

obtained in Section 2 by summing over a large number of neutral cells 
(system I) and this deviation actually led to the controversy mentioned in 
the Introduction. We want to stress that the boundaries of the finite series 
considered in the two systems are different. 

By performing a computer calculation of the limit (3.2), we found that 
the value (3.7) was indeed obtained for a series of Pi corresponding to 
neutral spheres. In this calculation one starts with a sphere the radius of 
which is the square root of an integer N. For  most N there are a number 
of lattice points g(N) on that sphere. Usually the volume of this sphere 
is a little smaller than the number of lattice points N Zn=0 g(n) on and 
within that sphere. Then one increases the radius a little so that 
~2P=o g(n) = (4rU3) p3/2. One should be careful, however, that the p found 
in this way remains smaller than N + 1. 

We have come to the conclusion that the Ewald-like method of sum- 
mation (integration) is equivalent to summation over large neutral spheres. 

3.2 .  D i m e n s i o n  2 

We have performed an analogous calculation summing over a 
sequence of neutral circles with increasing radius. It is described in some 
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detail in Appendix A. Again in this case the analytical expression for ~d  
found by the Laplace-transform method is identical to that obtained by the 
Ewald transformation, also briefly described in that Appendix. We find 
[-see (A.17)] 

~e~ = --(e2/a) J ,  with .J  = 3.90025 (3.8) 

However, in two dimensions this value agrees closely with that found 
in (2.22) by summation over a large integer number of neutral squares. 
Hence, in two dimensions systems I and II give the same outcome. 

For the two-dimensional case we did a computer calculation for large 
values of p of the function 

f (p )= ~ g(n) 2 g ~  (3.9) 

for two series of p values. The first series of Pi was chosen such that 

Pi 

g(n) = rcp, (3.10) 
rt--O 

corresponding to neutral circles. In the second series o fp  values such a con- 
dition was not imposed. For  the first series the value of f(Pi) rapidly 
approached the value of or given in (3.8). For  the second series the 
fluctuations in f (p)  were larger, but also in this case the limit J was 
approached eventually. The explanation for this behavior, which was 
different in three dimensions, lies in the fact that in two dimensions 
g(n) is either 4 or 8 (or 0), so that the discontinuities i n f ( p )  go to zero for 
p--.  oQ. 

4. THE RELATION BETWEEN @,,, A N D  @i 

Remember that ~e, has been defined as the potential energy of an elec- 
tron at a lattice point of an infinite Wigner lattice due to the other elec- 
trons and the uniform positive background (self-energy of this electron 
omitted); q5 i is defined as the potential energy per electron in the same 
system. In Sections 2 and 3 we have shown by exact calculations that in the 
three-dimensional case ~bel calculated for the limit of a large system built up 
of an integer number of neutral cells (system I) differs from qs~ calculated 
for a set of neutral spheres with increasing radius (system II). As far as 
we know this conclusion was first drawn by de Wette in his paper (8) 
mentioned in the Introduction by applying the so-called spherical 
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approximation. In this paper and also by Ihm and Cohen (9) it has further 
been shown that the following relation holds: 

crpi = l(qS , + eVav) (4.1) 

where Vav is the average potential in the lattice: Vav=(1/Voe11)Scen V(r)dr. 
We observe that in qSel the self-energy of the electron is omitted, but that in 
the definition of Vav the singularity at the position of the electron is 
included. It has been mentioned before that in the past the equality of ~b~ 
and �89 had usually been accepted without discussion. De Wette (8) 
calculated Vav in spherical approximation for system I and from (4.1) also 
q5 i. This q5 i turned out to have the same value as that calculated directly in 
the same approximation, and it was shown to be close to the exact Fuchs 
value given in (1.2). 

In this section we discuss these problems in somewhat greater detail. 
We calculate Vav for system I exactly and we give a simple direct proof that 
in the Ewald method V~ is zero. 

For the total potential energy of system I we have 

1 dr 
qs=Zq5 i=~ .  e~ y, IR , -Rj l  ePfv lr_Ri l  

p2 dri dr' ] (4.2) 
f,,) fv ,r,-r'lJ 

i and j number the neutral cubic cells, V is the total volume containing an 
integer number of cells and going to infinity, R~ and Rj indicate the lattice 
points, and p is the positive charge density e/a 3. The summand may be 
written as 

Osi: Z IR, -Rj l  ep f,j) drj p2 dridrj~ 

d r  i p 2 ~ r  d r d r  I 

-eP J(i)[ri-R,[ t-~- J(j(i) i)~Zr-7[ (4.3) 

The term between brackets indicates the interaction between neutral 
cells i and j. For large distance ]Ri -Rj ]  it becomes very small, so that 
Zse i  is a rapidly converging series, which for V sufficiently large no longer 
depends on Ri. The two remaining terms give the self-energy of a neutral 
cell (self-energy of the electron omitted). Hence q~i is independent of R~. 

The potential energy of an electron at lattice point Ri is 

1 f dr 
~e~(i)=e 2 Y" [Ri_Rs [ ep I r -R,J  (4.4) 

j # i  V 
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and may be written as 

[ e2 drz7 
r  [ R i = R j  I cp f(j) -ep f(i) dri 

. . I r j -  Ri[]  Iri----Ri[ (4.5) 

Here the term between brackets is the contribution to the potential energy 
of the electron at R~ from the neutral cell j. This series is again rapidly 
convergent, and hence for sufficiently large V, q~e~ again does not depend 
on R~. 

If we now write 

we find 

~i = l~e l  q- A ~  (4.6) 

1 drj p2 
A ~ = ~  { -  2 eP f~j) lrj~Ril +-f fc~)f(j) [ r~-r j l}  

1 dri 1 2 dr i dr~ 
-2 eP f(i) lri-Ril + 2P f(i) f(i) lri--r:l 

{ 1 p2f(i)f(j)dridrj; = ~ - -~ep flj) drj 1 
irs_ Ri I ~-~ ire_ rsl) all j 

(4.7) 

A little reflection shows that we may alternatively write 

A~ = ~ -- -~ ep f(i) dri 
[ri-Rjl F~ [r~-rjl) all j 

(4.8) 

This is (except for a factor �89 the expression B in Eq. (6) of the paper 
of Ihm and Cohen (9) and we see that it represents indeed one-half of the 
average potential Vav. In (4.7) we take the lattice Ri as origin of coor- 
dinates; (i) is the central cubic cell with edge a. We write 

Now, for rj > ri, 

e 2 
A~=~-~a6f(odrifdrj(.lril-rjl ~) (4.9) 

I r i - r j l  rj rjt=o rj 

= lr,,=l~ Pz(cos Oij)(r~)' (4.10) 
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With the addition theorem of spherical harmonics we can express 
Pt(cos 00 ) in terms of the polar angles of ri and U separately and we 
conclude that the integration over the polar angles of rj gives zero. 

On the other hand, for rj < ri, 

1 l 1 ~ (r_j~l 1 
- r  ~' Pt(c~ 0~ (4.11) 

[ r i -  rj[ rj it=o \ r i /  ri 

If now we integrate over the angles of r j, the terms with 1 > 0 vanish and we 
obtain 

Aq~ = 2a 6 j j  1/2a dxi dyi dzi 

e ff+,/ a d -  
2a6 JJ_l/Za J dxidyi 12a (4.12) 

This result corresponds with -1A,  where A is Hall's correction term, ~7) and 
with the term �89 of Ihm and Cohen. (9) With the relation (4.6) and the 
value of ~e~ obtained for system I in (2.11) we now find for the simple 
cubic lattice for the energy per particle ~ the value -1.760119(1/rs) Ry 
already mentioned in (1.2) of the Introduction, which had been found by 
several authors when calculating q~e~ by the Ewald method or (which is 
equivalent, as we have seen) for system II. 

In view of the relation (4.1), this would mean that in the 
Ewald method the average potential V,v must be zero. This is indeed true; 
in this respect one often refers to a paper by Birman. ~ In Appendix B we 
give a simple direct proof for the particular case of a Wigner lattice. 
Because, as was shown in Section 3, the calculation for system II (spheres 
with increasing radius such that they are neutral) leads to the same 
analytical expression (3.5) for ~el as the Ewald method, we come to the 
conclusion that also for system II the average potential is zero. A direct 
proof of this statement seems to be difficult and has not been given. 

In this paper we have investigated two kinds of infinite simple cubic 
Wigner lattices, which we called systems I and II, respectively. We found 
that, though ~bel was different for these two types, cbi has the same value. 
One might of course also imagine infinite systems as the limit of other 
shapes, e.g., neutral ellipsoids or parallelopipeds. We think it highly 
probable that for these, ~ again may have a different value and that q~ is 
unique. But a proof has not been given. 

In Sections 2 and 3 we have also briefly discussed the two-dimensional 
analogues of systems I and II for the simple square Wigner lattice. We 
found that q~ has the same value for both systems and that in both cases 
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~i = lq~=. We should expect, therefore, that the two-dimensional analogue 
of (4.9) for Aq~ would give zero, in contrast with the three-dimensional 
case. This turns out to be correct. 

To calculate for two dimensions 

- \ [ r , - r j l  

of (4.9), we first integrate the second integral over the angle ~p between r~ 
a n d  rj, (14) 

2~ dq~ :4rz1K(r<~  
fo (r2 +r~-  2r~rjcos ~p)1/2 \ r>/  (4.13) 

Here r> is the largest, r< is the smallest, from r~ and rj, and K is the 
complete elliptic integral of the first kind. Hence 

e 2 

+ , rjdrj K - -~a  , 

with 

r dr J (4.14) 

J=fo dxI4xK(x)-2zc+4--~ K(x ) - ~52zc] 

and ~, means integration over a square with unit side. With the help of 
formulas 6.146, 5.112.9, and 8.114.1 of ref. 14, one finds J = 0  and therefore 
Aq~ =0.  We conclude that the average potential is Cbav= 0 in two dimen- 
sions also for system I. 

APPENDIX A. S U M M A T I O N  OVER NEUTRAL SPHERES (OR 
CIRCLES) WITH INCREASING RADIUS 

A1. Dimension 3 4 

Consider a simple cubic lattice of electrons with lattice constant 1. The 
distance of a lattice point nl,n2, n3 to the origin n i = 0  is given by 

4 The following derivation had been completed in 1979 at the time of the controversy 
mentioned in the Introduction. A substantial contribution was then made by our student 

W. J. Ventevogel. 
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//1/2 = (r/~ q- n22 q- / / 2 )  1/2. Let us call g(n) the number of lattice points on the 
spherical surface with radius n 1/2. We want to investigate Zff= 1 [g(n)/nl/23 
for large values of N. Except for a factor - e  (the electron charge), this sum 
gives the potential at the origin due to the electrons inside and on the 
surface of a sphere with radius N1/2 (the self-energy of the electron at the 
origin excluded). Inside the sphere we have also a uniform compensating 
positive charge with density + e. The potential energy of an electron at the 
origin due to the other electrons and the uniform charge inside the sphere 
is then 

~ e l  = e2 g(n) 
n 1 //1/2 27 rN (A.1) 

Now, for almost all integers n, g(n) ~ 4rc/3[n 3/2 - ( n -  1)3/2 3 ~ 2rcn l/2 for 
large n. Hence, the sum in the expression above jumps for almost all integer 
numbers N by an amount of about 27r and therefore has no proper limit. 
We now consider a sequence of neutral spheres with radius p~/2 such that 

4re p~/2 = ~ g(n) (A.2) 
3 n = O  

P Here Zn=0 is defined as Z~P_3o, where [p]  is the largest integer ~<p. If 
(A.2) is satisfied, the uniform charge exactly compensates the charge of the 
electrons inside (or on) the sphere. We now want to calculate 

lira n--375- - 2~zpi (A.3) 
i ~ o v  t_ 1 

or rather, if we replace this limit by the limit of a continuous function of p, 
which for p = Pi has the above values 

lira P - _-7~ g( n ) (A.4) 
p ~ z G  n 1 r t ~ O  

Let us call the expression between brackets f ( P ) = f l ( P ) + f 2 ( P ) +  
f3(P). We now introduce the (modified) Laplace transform 

;5 f ( s )  =- e Wpl/Zf(p) dp (A.5) 

and apply the well-known Tauber theorem, 112/ which says 

2 32- 
lim f ( p ) =  lim ~575s/f(s)  (A.6) 

p ~ o o  s ~ 0  



378 Nijboer and Ruijgrok 

Now 

2~ fo ~ 1 ~3/2s_ S/2 f2(s)  =- - -~- e ~7~p3/2 dp = - 

f 3 ( s ) = - -  e ~p 2 g ( n ) d p = - s  -1 g ( n ) e - ' "  
n = 0  n = 0  

fO 0 --sp l/2 ~ff~ g(") S--3/2fs~176 k e--nttl/2 L r  e p ~ ~ @ =  ,,g(,,) at 
- -  n = l  

;7 i = - - S  3 /2  tl/2 0 g(n) e - " t  dt 

= s  1 g(n) e - S ~ + ~ s -  g ( n ) e - " '  dt 
t W2 

n = l  n = l  

Hence 

;7 i 2n 1/2S3/2f (s )  =- --~S 1 __ 2(s/rc)l/2 + ~z i/2 I t/2 g(n) e ~' dt (A.7) 
n = l  

Notice that 

g(n) e =- e - 1 
n = l  m =  --oo 

and according to a well-known relation of the theta function, 
+ o o  + o o  

e x p ( - - m 2 t ) = ( ~ / t )  1/2 ~ exp(--m2~2t -1) 
r n =  --~ m =  - - o o  

We want to study the expression (A.7) for small s and split the integral 
~s ~176 = I~ + f~" Then 

rc -1/2 t 1/2 g(n) e m dt 
n = l  

=re 1/2f~t-1/2{(rc/t)3/a[m+~~ e x p ( - m 2 r c 2 t - 1 ) ] 3 - 1 } d t  
= --co 

= ~ fs t -2 exp(-r~2m2t -1) - 1 dt 
m oo 

fs fs" + g t -2  d t _  ~ 1/2 l - 1 / 2  d t  

= ~, e x p ( - m 2 u  --1 d u + ~ / s - l - 2 + 2 ( s / ~ )  m 
- ~  - - o o  

(A.8) 
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Finally, from (A.6), (A.7) and (A.8), 

lim f (p)=~z 1(_ e x p ( - m 2 u  - 1  du 
p ~ o~ Jr; m o o  

+ ~ - l / 2 f  t 1/2 exp( -mZt )  - 1  d r - 3  
m oe 

n = l  n = l  

= 0.086169 + 0.076533 - 3 = -2.837297 (A.9) 

This is the result (1.4) from the Introduction when applied to a simple 
cubic lattice. For the potential energy of an electron in the field of the other 
electrons plus background we then find 

~el = - 2  �9 1.760119(1/rs) Ry (A.10) 

i.e., twice the value of the energy per electron given in the Introduction. 

A2. D imens ion  2 ( S u m m a t i o n  over  Neut ra l  Circles w i t h  
Increasing Radius)  

Consider a simple square lattice with lattice constant 1. Again g(n) is 
the number of lattice points on a circle with radius n 1/2= (n 2 + n~) 1/2. Now 

~,, =1 [g(n)/nl/2] g(n) is roughly of order 7z for large n, so that the jumps in u 
for large N go to zero. We now consider circles with radius p]/2, such that 

Pi  

Z g(n) (A.11) 
n = O  

The uniform charge inside such a neutral circle contributes a potential 
2r~ep]/2 at the origin. Hence, we should calculate 

l l ] P' g(n) 27rp)/2 i - - - 2 r c p  1/2 (A.12) 
lim nl/2 = m nl/2 

p i  ~ oO n 1 ~ n 1 

We now use the ordinary Laplace transform f ( s ) = S ~  e spf(p)dp and 
apply Tauber's theorem, (12) which says 

lim f ( p ) =  lim sf(s) (A.13) 
p --* oo s ~ 0  

If we write 

~ g(n) 2rcpl/2 
,=1 ~7-~=-L(P)' - " - f2(P) 
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we then have 

sfl(s)= ~ g(fl)e " n = l  .... foe { I ( . ~ ) ] 2  } nl/---------------T-- ==-t /2  0 --1 x - t /2  dx (A.14) 

where the theta function O(x)=Zn+=~ exp(-rm2x) with the property 
that O ( x ) =  x - l / 2 0 ( x  1). Further, 

2 
dx 

sf2(s)= -2r~s e Sppl/2 ap-- --g3/2S-1/2= __gl/2~ 
~0 (S+X)  X m (A.15) 

Therefore, 

0 1 x dx (A.16) s Ef,(s)+fz(s)]=n '/2/~ 

We may now take the limit s ~ 0 and we find, applying (A.13), 

lim nl/2 2~zp 1/2 
p~oo n 1 

oe 0 X 2 

= ~ 1/2 g(n) e - " x -  x 1/2 dx 

--oo +co 
= - 4 + 2  ~, Z' (n~+n2)-m~(nl/2(n~+n2) 1/2) 

n I = --co n2-- co 
= - 4 + 0.09975 = - 3.90025 (A. 17) 

The same result may be obtained from the general Ewald-like transfor- 
mation indicated in the Introduction: 

f l - g ( r )  d2 r 

= -- f  [ 1 -  g(r)] qs(lrl/2r)d2r - f E l -g ( r ) ]  1-~(=1/2r)d2 r 
r r 

~(rcl/2h) dZh = - f  [1-g(r)]q~(n'/Zr)r d 2 r - f  [1 - S(hl]-----ff--- 

= - 4  + 2 f g(r) cI)(rd/2r-----) d2r (A.181 
r 
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The latter equality holds because the two-dimensional Fourier transform of 
[ 1 -  ch(~l/2r)]/r is q~(~l/2h)/h and for a simple square lattice S ( h ) -  g(h). 

A P P E N D I X  B. PROOF T H A T  IN THE EWALD M E T H O D  THE 
A V E R A G E  POTENTIAL FOR THE W l G N E R  
LATTICE IS ZERO 

When the cube root of the volume per particle is taken as unit of 
length, the potential at an arbitrary point r of the central cell is given by 

e f 1-g(r')d3r' (B.1) V(r) = - -  + e 

Application of Parseval's theorem leads to 

V(r)= -e/r+ef  [1 - S(h)] exp(2rrih" r) (~h2) -~ d3h (B.2) 

Now 

1 - g ( r )  = 1 - ~ '  5 ( r  - r . ) ,  
I1 x 

where the prime at the summation sign means that the origin is excluded. 
hz runs over the vectors of the reciprocal lattice. We now find 

~ ,  exp(2~zihz �9 r) 
V(r) = - e  Irh~ (B.3) 

To obtain the average potential, this expression must be integrated 
over the unit cell. Now, according to a well-known theorem, 
~oeH exp(2~zih, r ) d 3 r = 0  for all reciprocal lattice vectors except the null 
vector. Hence Vav = 0. 
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